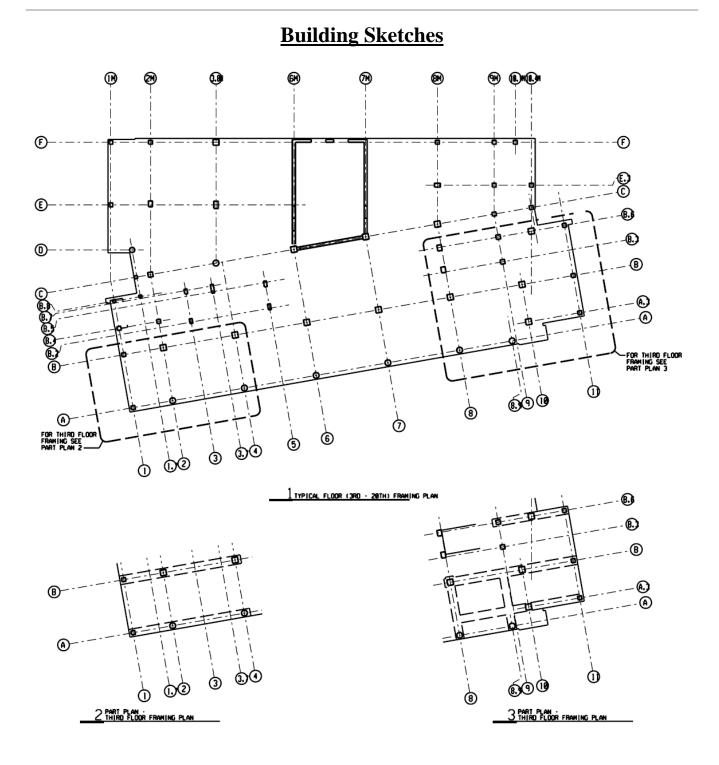
### Structural Technical Report 1 Advisor: Boothby 10-05-2005

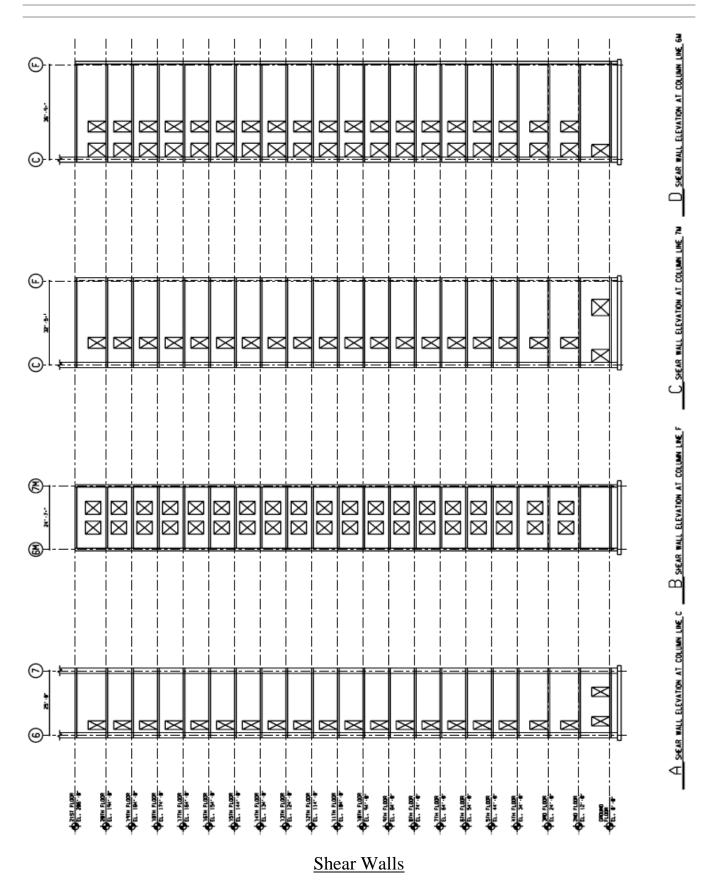


## **Executive Summary**

This focus of this report is to introduce and analyze the existing conditions for the structural system of the Christina Landing Apartment Tower. The building is a 22 story high rise which is part of a residential building project in Wilmington, Delaware. The project site is located on the fringe of center city just south of the Christina River. Included in the housing development are 63 townhouses, a river-walk, and a 2 acre park. The tower is highly visible and able to be view from both interstate 95 and interstate 495, which bypass the heart of Wilmington.


This report covers the design criteria used and all relevant codes. It also includes detailed descriptions of the structural system incorporated to illustrate how the building resists the loads applied to it. Building schematics have been included to allow for a better understanding of the building layout. All required loads are given as well as calculations detailing wind, seismic, and snow loading. Finally various structural elements are checked for size and capacity compatibility to the existing conditions. All calculations done for this report are given in the appendix.

### **Introduction/Summary of Structural System**


The Christina Landing Apartment Tower is a predominantly cast-in-place concrete building. Its floors are supported by a two way flat slab system. It also incorporates some small areas of reinforced concrete beams or posttensioned beams. Spans between columns are on average approximately 20 to 25 feet. The floors are supported by square and round concrete columns of various sizes. The entire building is supported by a foundation system of H-piles and pile caps. Concrete strengths differ throughout the structure, ranging from 4000psi to 8000psi.

## **Codes Followed for Design**

Building Officials and Code Administrators (BOCA) National Building Code / 1996 with City of Wilmington Amendments.
American Society of Civil Engineers 7-1995 (ASCE7-95)
Council of American Building Officials/American National Standards Institute (CABO/ANSI)
ANSI/ASME Standard A17.1 Safety Code for Elevators and Escalators

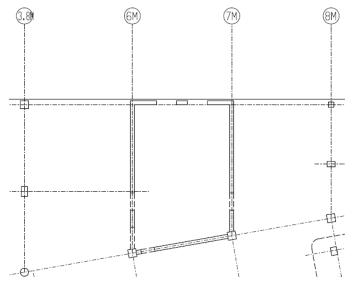


Basic Building Layout Typical Floors (3-20)



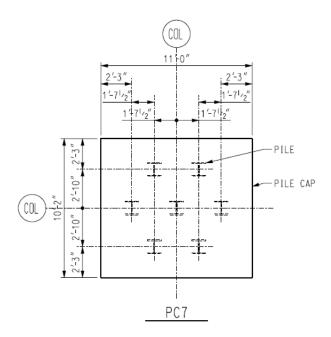
5

### **Description of Structure**


### Slab and Framing System

All the floors in the building have the same two way flat slab system, including the roof and the ground floor. It is an 8" slab with #6 bars at 10" on center, each way in the top and #4 bars at 10" on center, each way in the bottom. The strength of the concrete in the floor system is 5,600psi from the ground floor to the fifth floor and 4,500psi above the fifth floor. Each floor also has small sections of concrete framing. Some of these beams are posttensioned concrete framing. The member sizes range from 12"x 16" to 36"x 60".

#### Main Wind Force Resisting System (Lateral System)

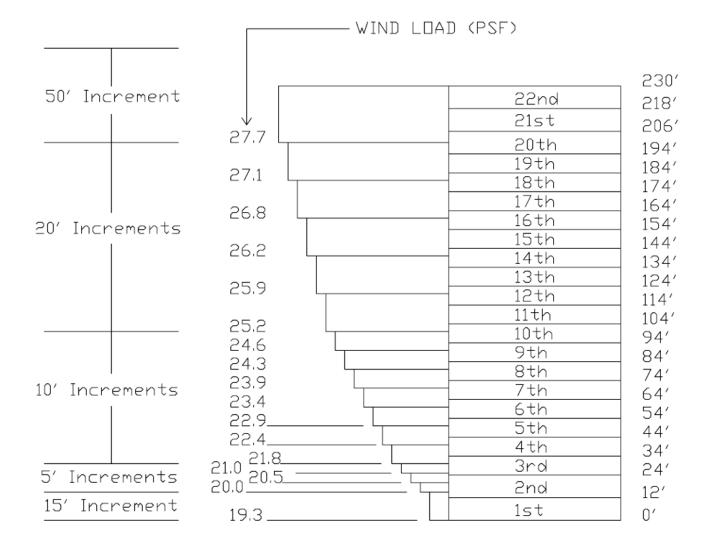

The main wind force resisting system consists of 4 concrete shear walls arranged in a core box at the center of the building. The walls travel the height of the building. They are 12" thick and range in length from 25 to 36

feet. The typical wall reinforcing is #4 bars each way in each face at 12" on center. All of the shear walls have at least one or two openings in them per floor for doors and windows. In addition to the typical reinforcing two #9 bars travel the height of the building on each side of any opening. At the edge of each shear wall four #11 bars travel vertically through the structure. (see shear wall diagram for more information)



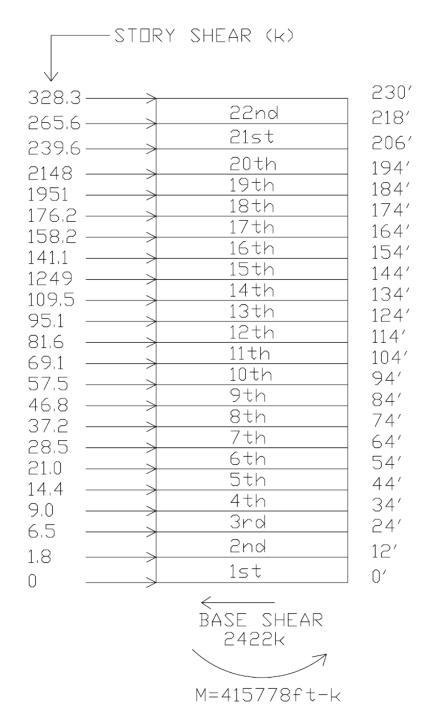
### Foundation

The building's columns rest on the foundation system consisting of H-piles and 4,000psi concrete pile caps. The pile caps range in size, shape, and the number of piles they sit on. The H-piles are H12x74s and are grouped in bunches of 2, 3, 4, 5, 6, 7, and 8 piles. The pile cap sizes range from 6'x 8'x 43" for the grouping of 2 piles to 11'x 10'x 60" for the areas with 8 piles. The shear walls also rest on strip pile caps topping H-piles. The edge of the slab on grade rests on grade beams which span the pile caps.




## **Design Loads**

- •110 psf Dead Load
- •15 psf Miscellaneous Dead Load
- •15 psf Snow Load
- •40psf Live Load Typical Floor
- •30 psf Live Load Roof
- •100 psf Live Load Public Space
- •150 psf Live Load Mechanical Floor


# Wind Load

The following image is a wind loading diagram for the apartment tower. For the calculations I estimated the building to be a 91'x157' rectangle. These dimensions are conservative and provide the loading for the worst case scenario pressures on the structure. In order to calculate the building pressures I used method 2 for high rise buildings from ASCE7. It was also determined that the tower was not able to be classified as a rigid structure and therefore a gust factor needed to be found. Other relevant information used in the wind loading calculations includes an importance factor of 1 and a wind exposure of class "C". The total base shear on the building due to this loading case is 894k and the total resisting moment at the base of the structure is 108,792 ft-k. All of the information presented here is generated from calculations and spreadsheets in the appendix.

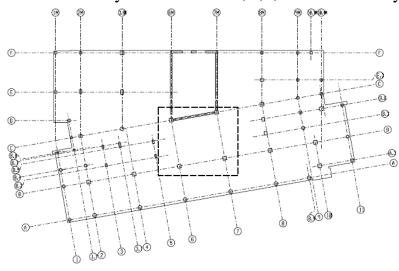


## Seismic Load

For the seismic calculations I also estimated the shape of the building as a 91'x157' rectangle. Items to note include: seismic use group I, importance factor 1.0, soil site class E, and an R value of 6.0 for specially reinforce concrete shear walls. All other design values, calculations, and spreadsheets are given in the appendix.



# Snow Load


The ground snow load in Wilmington Delaware can be conservatively assumed to be 25psf. Being in an open area the exposure factor for the building is 0.9. The building has the typical 1.0 thermal and importance factors. After multiplying the ground load by exposure, thermal, and importance factors the roof snow load is 15.75psf.

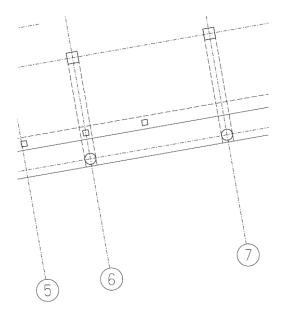
# Spot Checks

### 2-way slab

For the 2-way slab check I used an average interior bay 25'x25'6". It can be seen in the diagram below enclosed by column lines B,C,6, and 7. This bay

is typical of floors 3-20. However the calculations I did only apply to floors 15-20 where the compressive strength of the concrete is 4,500 psi. The slab analyzed is an 8" flat slab with #6 bars at 10" on center each way in the top,



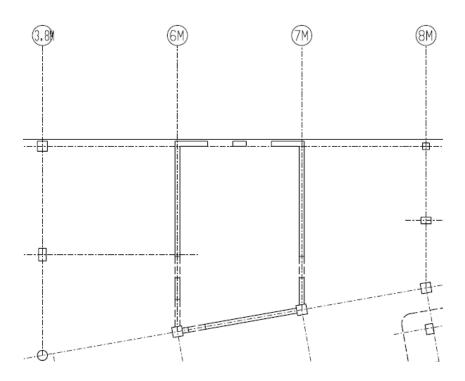

and #4 bars at 10" on center each way in the bottom. I used 40psf live load and assumed 120psf total dead load on the panel. I checked the bay for the long span direction of 25'6". The following table gives my moments.

|         | Column Strip | Middle Strip |
|---------|--------------|--------------|
| Support | 175.1ft-k    | 58.4ft-k     |
| Midspan | 75.4ft-k     | 50.3ft-k     |

I checked the top steel using the 175.1ft-k moment as the worst case and found that the slab is sufficient to withstand this bending moment. For the bottom steel I used the 75.4ft-k moment and also found that the #4 bars were sufficient. See appendix for all other calculations and assumptions.

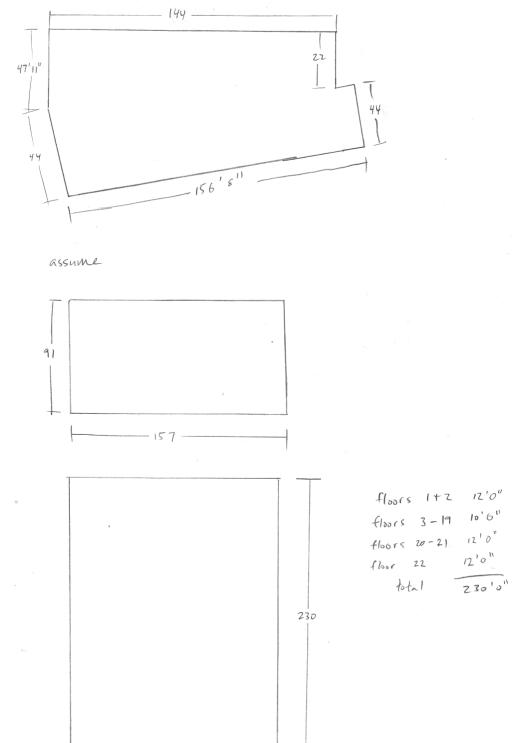
### Beam Check

For the beam spot check I used a reinforced concrete beam spanning between columns A6 and B6 on the 21<sup>st</sup> floor. The beam is 24" wide and 16" deep, with five #8 bars in the top, and four #8 bars in the bottom. The beam is in an exterior bay running perpendicular to the edge of slab. It is supported by a 24" diameter round column on one side and a 24" square column on the other. The beam has a 101ft-k positive moment and a 157.3ft-k negative moment. I found that both the top and bottom steel were sufficient to withstand these moments. See appendix for all other calculations and assumptions.




### Column Check

For the column check I used column B7 (upper right most column in above figure). It is a 24" square column with ten #11 bars for reinforcement. I analyzed the column between level 15 and 16. The column has a tributary area of 550sqft per floor above. Using a live load reduction the total live load can be lowered from 40psf to 16psf. On completion of the column calculations I found that it was sufficient to carry the load applied. See appendix for all other calculations and assumptions.


#### Shear Wall Check

For the shear walls I checked the controlling wall for the worst case shear load. I assumed the distribution to be equal between each of the shear walls in each direction. The worst case shear was for seismic loading at 2422k, or 1211k per wall. I determined the maximum load able to be resisted by the wall to be 1865k and therefore conclude the shear wall system to be adequate. See appendix for all other calculations and assumptions.



# <u>Appendix</u>

### Wind Calculations



| REFERRED A 75 mills (11087)              | use 90 mph |
|------------------------------------------|------------|
| BASIC WIND SPEED: 75 mph (1609.3)        |            |
| IMPORTANCE FACTOR I=1.05 (1609.5)        |            |
| WIND EXPOSURE "C" OPEN TERRAIN           |            |
| D find V 6.5.4                           |            |
| find Kd                                  |            |
| 3 find I 6.5.5                           |            |
| 3 find Kz, Kh 6.5.6                      |            |
| D find Kzt 6.5.7                         |            |
| 3 find Gor GF 6.5.8                      |            |
| @ enclosure classification 6.5.9         |            |
| Dinternal pressure coeff. G Gpi 6.5.11.1 |            |
| Dexternal pressure poette 6.5.11.2,3     |            |
| Cp or GCpf Ct                            |            |
| @ velocity pressure 22 or 24 6.5.10      |            |
| (D) design wind load por F 6.5.12        |            |
| () V= 90 mph                             |            |
| Ka= , 85                                 |            |
| @ Building category II                   | •          |
| I = 1.0                                  |            |
| 3 Kz, KL = 1.50                          |            |
| D Kzt= 1.0 Flat ground                   |            |
| (S) (+:,016 x=.9                         |            |
| T= .016 (230) -9 = 2.14                  |            |
| N, = Z.19 = .467 FLEXIBLE                |            |
|                                          |            |

Circle factor calcs.  

$$G = .925 \left( \frac{1+1.7}{1+1.7} \frac{1}{2} \sqrt{\frac{3}{9} \frac{2}{4} Q^{2} + 9\frac{2}{8} R^{2}}}{1+1.7 \frac{3}{9} \sqrt{1\frac{2}{2}}} \right)$$

$$Jv = 9a^{2} 3.4'$$

$$9k^{2} \sqrt{21n} \frac{500}{(500)(.467)} + \frac{.577}{\sqrt{21n} \frac{5}{(3600(.467))}} = 4.00$$

$$\frac{1}{N_{1}}$$

$$R = \sqrt{\frac{1}{15}} R_{N} R_{h} R_{h} (5.53 + .47R_{L})$$

$$\frac{1}{N_{1}}$$

$$R = \sqrt{\frac{1}{15}} R_{N} R_{h} R_{h} (5.53 + .47R_{L})$$

$$\frac{1}{2} R_{N} n^{2} 15 ft$$

$$C = .20$$

$$\frac{1}{2} = .6(230) = 138 ft$$

$$\lambda = 500 \left(\frac{138}{33}\right)^{\frac{1}{2}} = 665.6$$

$$\overline{b} = .65$$

$$\overline{a} = \frac{1}{6.5}$$

$$\overline{V_{2}} = \overline{b} \left(\frac{\frac{2}{33}}{(\frac{3}{33})} \sqrt{\frac{88}{50}}\right) = .65 \left(\frac{138}{33}\right)^{\frac{1}{6.5}} 90 \left(\frac{88}{50}\right) = 106.9$$

$$N_{1} = \frac{N_{1} L \overline{a}}{V_{2}} = \frac{.467(665.6)}{106.9} = 2.91$$

$$R_{h} = \frac{7.47 N_{1}}{(1+10.3N_{1})^{\frac{6}{3}}} = \frac{7.47(2.41)}{(1+10.3N_{1})^{\frac{6}{3}}} = 0.712$$

$$N_{Lh} = 4.6 N_{1} \left(\frac{h}{V_{\overline{2}}}\right) = 4.6 \left(\frac{.467}{106.9}\right) = .020$$

$$M_{L} = 15.4 N_{1} \left(\frac{L}{\overline{V_{2}}}\right) \approx 15.4 (.467) \left(\frac{157}{106.9}\right) = 10.56$$

### Pennsylvania State University

$$R_{\lambda} = \frac{1}{h} - \frac{1}{2h^{2}} \left(1 - e^{-2h}\right)$$

$$R_{h} = \frac{1}{h_{62}} - \frac{1}{2(h_{62})^{2}} \left(1 - e^{-2(Y_{62})}\right) = .193$$

$$R_{g} = \frac{1}{h^{2}} - \frac{1}{2(h^{2})^{2}} \left(1 - e^{-2(h^{2})}\right) = .197$$

$$R_{L} = \frac{1}{10.5b} - \frac{1}{2(h^{2},5b)^{4}} \left(1 - e^{-2(h^{2},5b)}\right) = .093$$

$$R = \sqrt{\frac{1}{\beta}} R_{h} R_{h} R_{g} \left(.53 + .477 R_{h}\right) = \sqrt{\frac{(1-h^{2})}{(s^{2})} .0712 (.193) (.987) \left(.53 + .477 (.09)\right)}$$

$$R = \sqrt{\frac{1}{\beta}} R_{h} R_{h} R_{g} \left(.53 + .477 R_{h}\right) = \sqrt{\frac{(1-h^{2})}{(s^{2})} .0712 (.193) (.987) \left(.53 + .477 (.09)\right)}$$

$$R = \sqrt{\frac{1}{\beta}} R_{h} R_{h} R_{g} \left(.53 + .477 R_{h}\right) = \sqrt{\frac{(1-h^{2})}{(s^{2})} .0712 (.193) (.987) \left(.53 + .477 (.09)\right)}$$

$$R = \sqrt{\frac{1}{\beta}} R_{h} R_{h} R_{g} \left(.53 + .477 R_{h}\right) = \sqrt{\frac{(1-h^{2})}{(s^{2})} .0712 (.193) (.987) \left(.53 + .477 (.09)\right)}}$$

$$R = \sqrt{\frac{1}{\beta}} R_{h} R_{h} R_{g} \left(.53 + .477 R_{h}\right) = \sqrt{\frac{(1-h^{2})}{(s^{2})} .0712 (.193) (.987) \left(.53 + .477 (.09)\right)}}$$

$$R = \sqrt{\frac{1}{\beta}} R_{h} R_{h} R_{g} \left(.53 + .477 R_{h}\right) = \sqrt{\frac{(1-h^{2})}{(s^{2})} .0712 (.193) (.987) \left(.53 + .477 (.09)\right)}}$$

$$R = \sqrt{\frac{1}{\beta}} R_{h} R_{h} R_{g} \left(.53 + .477 R_{h}\right) = \sqrt{\frac{(1-h^{2})}{(s^{2})} .0712 (.193) (.987) \left(.53 + .477 (.09)\right)}}$$

$$R = \sqrt{\frac{1}{\beta}} R_{h} R$$

#### WIND CALCULATIONS

(see calcs. for additional info.)

| Kzt= 1            |
|-------------------|
| Kd= 0.85          |
| V= 90             |
| = 1               |
| Gf= 0.909         |
| Gcpi= 0.18        |
| Cp windward= 0.8  |
| Cp leeward= -0.35 |
|                   |

| Height | Kz | (     | qz         | p(windward) | p(leeward)   | pressure (psf) |
|--------|----|-------|------------|-------------|--------------|----------------|
| 0-1    | 5  | 0.85  | 14.98176   | 6.129478656 | -13.18784935 | 19.317328      |
| 20     | )  | 0.9   | 15.86304   | 6.770345472 | -13.18784935 | 19.95819482    |
| 2!     | 5  | 0.94  | 16.568064  | 7.283038925 | -13.18784935 | 20.47088827    |
| 30     | )  | 0.98  | 17.273088  | 7.795732378 | -13.18784935 | 20.98358172    |
| 40     | )  | 1.04  | 18.330624  | 8.564772557 | -13.18784935 | 21.7526219     |
| 50     | )  | 1.09  | 19.211904  | 9.205639373 | -13.18784935 | 22.39348872    |
| 60     | )  | 1.13  | 19.916928  | 9.718332826 | -13.18784935 | 22.90618217    |
| 70     | )  | 1.17  | 20.621952  | 10.23102628 | -13.18784935 | 23.41887562    |
| 80     | )  | 1.21  | 21.326976  | 10.74371973 | -13.18784935 | 23.93156908    |
| 90     | )  | 1.24  | 21.855744  | 11.12823982 | -13.18784935 | 24.31608917    |
| 100    | )  | 1.26  | 22.208256  | 11.38458655 | -13.18784935 | 24.57243589    |
| 120    | )  | 1.31  | 23.089536  | 12.02545336 | -13.18784935 | 25.21330271    |
| 140    | )  | 1.36  | 23.970816  | 12.66632018 | -13.18784935 | 25.85416952    |
| 160    | )  | 1.39  | 24.499584  | 13.05084027 | -13.18784935 | 26.23868961    |
| 180    | )  | 1.43  | 25.204608  | 13.56353372 | -13.18784935 | 26.75138307    |
| 200    | )  | 1.46  | 25.733376  | 13.94805381 | -13.18784935 | 27.13590316    |
| 250    | )  | 1.53  | 26.967168  | 14.84526735 | -13.18784935 | 28.0331167     |
| 230    | )  | 1.502 | 26.4736512 | 14.48638194 | -13.18784935 | 27.67423128    |
|        |    |       |            |             |              |                |

| story             | elev. | t   | rib. H below | trib. H above |         | V(lb)       | V(k)        | M(ft*k)     |
|-------------------|-------|-----|--------------|---------------|---------|-------------|-------------|-------------|
| gro               | und   | 0   |              | 6             | 0-6     | 18196.92298 | 18.19692298 | 0           |
|                   | 1     | 12  | 6            | 6             | 6-18    | 36695.69422 | 36.69569422 | 440.3483307 |
|                   | 2     | 24  | 6            | 5             | 18-29   | 35514.20979 | 35.51420979 | 852.3410349 |
|                   | 3     | 34  | 5            | 5             | 29-39   | 34030.87708 | 34.03087708 | 1157.049821 |
|                   | 4     | 44  | 5            | 5             | 39-49   | 35057.1612  | 35.0571612  | 1542.515093 |
|                   | 5     | 54  | 5            | 5             | 49-59   | 35882.21314 | 35.88221314 | 1937.639509 |
|                   | 6     | 64  | 5            | 5             | 59-69   | 36687.14186 | 36.68714186 | 2347.977079 |
|                   | 7     | 74  | 5            | 5             | 69-79   | 37492.07058 | 37.49207058 | 2774.413223 |
|                   | 8     | 84  | 5            | 5             | 79-89   | 38115.89034 | 38.11589034 | 3201.734788 |
|                   | 9     | 94  | 5            | 5             | 89-99   | 38538.47792 | 38.53847792 | 3622.616924 |
|                   | 10    | 104 | 5            | 5             | 99-109  | 39484.26916 | 39.48426916 | 4106.363993 |
|                   | 11    | 114 | 5            | 5             | 109-119 | 39584.88525 | 39.58488525 | 4512.676919 |
|                   | 12    | 124 | 5            | 5             | 119-129 | 40490.43006 | 40.49043006 | 5020.813328 |
|                   | 13    | 134 | 5            | 5             | 129-139 | 40591.04615 | 40.59104615 | 5439.200185 |
|                   | 14    | 144 | 5            | 5             | 139-149 | 41134.37304 | 41.13437304 | 5923.349718 |
|                   | 15    | 154 | 5            | 5             | 149-159 | 41194.74269 | 41.19474269 | 6343.990375 |
|                   | 16    | 164 | 5            | 5             | 159-169 | 41919.17854 | 41.91917854 | 6874.745281 |
|                   | 17    | 174 | 5            | 5             | 169-179 | 41999.67142 | 41.99967142 | 7307.942826 |
|                   | 18    | 184 | 5            | 5             | 179-189 | 42542.9983  | 42.5429983  | 7827.911687 |
|                   | 19    | 194 | 5            | 6             | 189-200 | 46863.70475 | 46.86370475 | 9091.558722 |
|                   | 20    | 206 | 6            | 6             | 200-212 | 52814.39186 | 52.81439186 | 10879.76472 |
|                   | 21    | 218 | 6            | 6             | 212-224 | 52814.39186 | 52.81439186 | 11513.53743 |
|                   | 22    | 230 | 6            | 0             | 224-230 | 26407.19593 | 26.40719593 | 6073.655064 |
|                   |       |     |              |               |         |             | 894.0519381 | 108792.146  |
|                   |       | _   |              |               |         |             |             |             |
| Base Shear= 894 k |       |     |              |               |         |             |             |             |

Base Shear= 894 k Base Resisting Moment= 108792 ft\*k

# **Seismic Calcuations**

$$\frac{Seismic}{Seismic} nsc group T$$

$$T = 1.0$$

$$I.os = 7.5 \quad S_1 = .075$$

$$.2s = 30 \quad S_5 = .3$$

$$R = 6.0 \quad special \ reinforced \\ conc. \ shear \ malls$$

$$Soil \quad Site \ Class \quad E$$

$$F_a = 2.34$$

$$F_v = 3.5$$

$$S_{DS} = \frac{2}{3} F_a S_5 = \frac{2}{3} [2.34] (3) = .468$$

$$S_{D1} = \frac{2}{3} F_v S_1 = \frac{2}{3} (3.5) (.075) = .175$$

$$T_0 = .2 \quad \frac{Soi}{Sos} = .2 \left( \frac{.175}{.468} \right) = .075$$

$$T_5 = \frac{Soi}{Sps} = \frac{.175}{.468} = .374$$

$$T = 2.14$$

$$S_a = \frac{S_{D1}}{T} = \frac{.175}{2.14} = .0818$$
  
selsmic design cat. C

#### SEISMIC DISTRIBUTION

(see Seismic cals. for additional info.)

|       | k=   | 1.82           | ]                |             |          |                 |                  |
|-------|------|----------------|------------------|-------------|----------|-----------------|------------------|
|       |      | 2421.9         |                  |             |          |                 |                  |
|       | -    |                | 4                |             |          |                 |                  |
| Story |      | Story Load (k) | Story Height(ft) | wx*hx^k     | Cvx      | Story Shear (k) | Story Mom.(ft*k) |
| I     | roof | 2643           | 230              | 52534163.9  | 0.135568 | 328.3328146     | 75516.5473       |
|       | 22   | 2357           | 218              | 42496229.71 | 0.109665 | 265.5968169     | 57900.1060       |
|       | 21   | 2357           | 206              | 38335216.79 | 0.098927 | 239.5909384     | 49355.7333       |
|       | 20   | 2357           | 194              | 34368353.84 | 0.08869  | 214.7984761     | 41670.90430      |
|       | 19   | 2357           | 184              | 31212461.55 | 0.080546 | 195.0744923     | 35893.7065       |
|       | 18   | 2357           | 174              | 28194163.53 | 0.072757 | 176.2104577     | 30660.61964      |
|       | 17   | 2357           | 164              | 25314851.61 | 0.065327 | 158.2150711     | 25947.2716       |
|       | 16   | 2357           | 154              | 22576015.49 | 0.058259 | 141.0976431     | 21729.03704      |
|       | 15   | 2357           | 144              | 19979256.3  | 0.051558 | 124.8681804     | 17981.0179       |
|       | 14   | 2357           | 134              | 17526303    | 0.045228 | 109.5374888     | 14678.023        |
|       | 13   | 2357           | 124              | 15219032.68 | 0.039274 | 95.11730011     | 11794.5452       |
|       | 12   | 2357           | 114              | 13059495.86 | 0.033701 | 81.6204297      | 9304.72898       |
|       | 11   | 2357           | 104              | 11049948.66 | 0.028515 | 69.06097811     | 7182.34172       |
|       | 10   | 2357           | 94               | 9192894.5   | 0.023723 | 57.45459147     | 5400.73159       |
|       | 9    | 2357           | 84               | 7491139.475 | 0.019331 | 46.81880753     | 3932.779832      |
|       | 8    | 2357           | 74               | 5947867.873 | 0.015349 | 37.17352775     | 2750.84105       |
|       | 7    | 2357           | 64               | 4566748.925 | 0.011785 | 28.54168443     | 1826.667804      |
|       | 6    | 2357           | 54               | 3352094.283 | 0.00865  | 20.95022494     | 1131.31214       |
|       | 5    | 2357           | 44               | 2309103.788 | 0.005959 | 14.4316477      | 634.99249        |
|       | 4    | 2357           | 34               | 1444279.382 | 0.003727 | 9.026589164     | 306.904031       |
|       | 3    | 3215           | 24               | 1045118.264 | 0.002697 | 6.531875556     | 156.7650134      |
|       | 2    | 3215           | 12               | 295999.4098 | 0.000764 | 1.84996414      | 22.1995696       |
|       | 1    | 0              | 0                | 0           | 0        | 0               |                  |
|       |      | 53856          |                  | 387510738.8 | 1        | 2421.9          | 415777.77        |

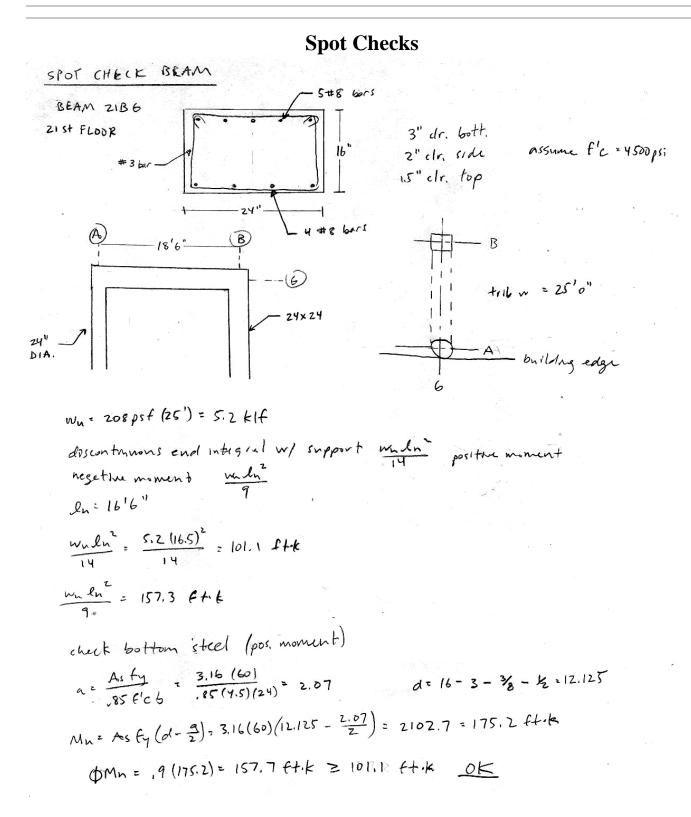
Totals

Base Shear= 2422 k Base Resisting Moment= 415778 ft\*k

# **Snow Load Calculations**

$$k = 1.82$$

$$C_{S} = \frac{S_{DS}}{R/T} = \frac{.468}{6} - .078$$

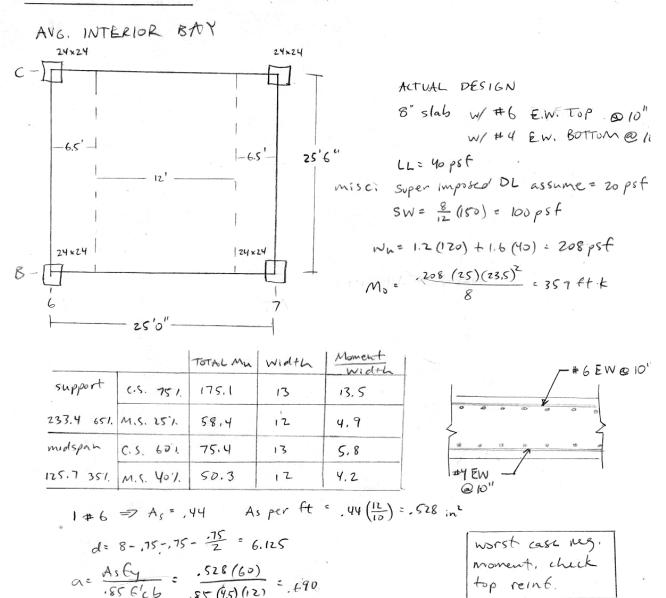

$$C_{S} = \frac{S_{D1}}{T(R/T)} = \frac{.175}{7.14(6)} = .014$$

$$C_{S} = .044(S_{DS})(T) = .044(.468) = .021$$

$$C_{S} = \frac{.5(.075)}{6} = .00625 = .021$$

$$V = 387510(.00625) = .2421.9 \text{ k}$$

Pennsylvania State University




#### Pennsylvania State University

check top steel (neg moment)  $\alpha = \frac{A_{c}f_{Y}}{.85 f'_{c} 6} = \frac{3.95 (60)}{.85 (4.5)(2^{N})^{2}} 2.58 \qquad d = 16 - 1.5 - \frac{3}{8} - .5 = 13.625$  $M_n = A_s f_y \left( d - \frac{a}{z} \right) = 3.95 (60) \left( 13.625 - \frac{2.58}{z} \right) = 2923.4 = 243.6 \text{ ft} \cdot k$ pmn = ,9 (243.6): 219 (+ € ≥ 157.3 (+ € OE

.

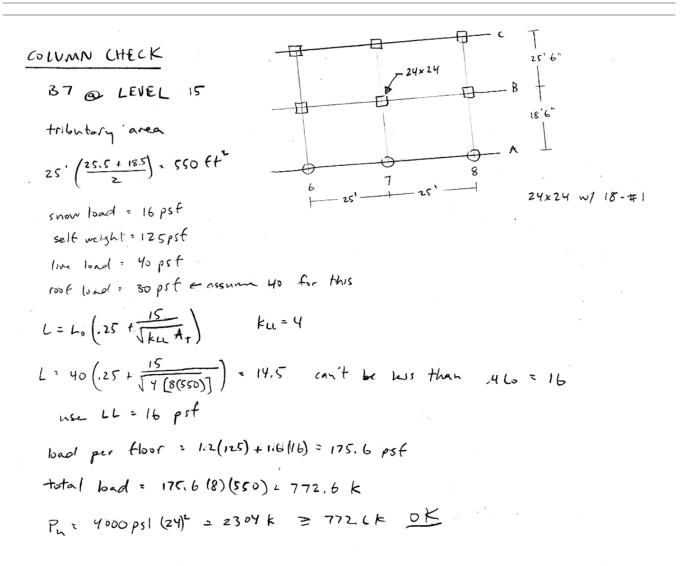
2 WAY SLAB CHECK

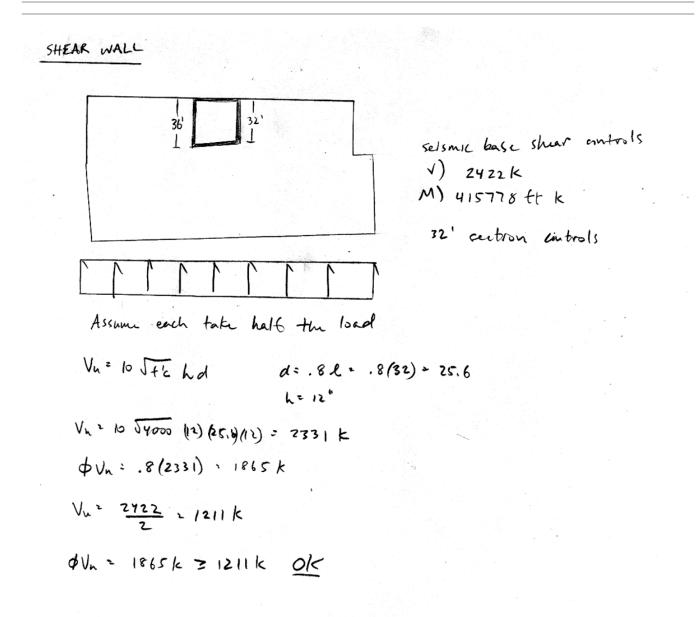


 $M_{\rm h} = .528 (60) \left( 6.125 - \frac{.690}{2} \right) = 183.1 \text{ m·k} = 15.3 \text{ ft-k}$  $\oint M_{\rm h} = .9(15.3) = 13.7 \text{ ft-k} = 13.5 \text{ ft-k}$ 

Pennsylvania State University

10-05-2005


$$f # 4 \implies A_{5} = .20 \quad A_{5} per ff = .20 \left(\frac{12}{10}\right) = .24 m^{2}$$


$$d = e.o - .75 - .5 - .25 = 6.5 in$$

$$a = \frac{.24 (60)}{.85(4.5)(12)} = .314$$

$$M_{n} = .24 (60) \left(6.5 - \frac{.314}{2}\right) = .91.3 in k = 7.6 ff k$$

$$\phi M_{n} = .9 (7.6) = 6.8 ff k \ge 5.8 ff k ok$$



